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Abstract

The oxygen potentials of (Pu0.3U0.7)O2�x in the near stoichiometric region were measured by a thermogravimetric

technique which was used to establish the equilibrium between the oxide phases and H2/H2O system gas. The experi-

mental results of (Pu0.3U0.7)O2�x show a consistent variation in PO2
with O/M and temperature and are in agreement

with other works. The relationship between the partial oxygen pressure and x in MO2�x was evaluated by the lattice

defect theory. The relationship in the hypo-stoichiometric region was x / P�1=2
O2

near the stoichiometric composition,

and became x / P�1=3
O2

with a decrease in O/M.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

The oxygen potential (DGO2
) of mixed oxide (MOX)

fuel is an important parameter to control irradiation

behavior as well as the fabrication process [1,2]. The

DGO2
is expressed as a function of the ratio of oxygen

to metal (O/M). The stable structure of the MOX is fluo-

rite in the range of the O/M ratio of 2 ± x [3,4]. In the

range of near stoichiometric composition, the DGO2

changes drastically with the change of the O/M ratio.

There are a number of experimental data of the DGO2

for UO2 [5–11], which is the fuel in light water reactors

(LWRs). On the other hand, data for MOX fuel which is

used in fast reactors (FRs) [12–23] are limited. In this

work, the DGO2
was measured for the MOX fuel with

the composition of (Pu0.3U0.7)O2�x, which has been used

as a core fuel of the FR �Monju�.
0022-3115/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.jnucmat.2005.04.048

* Corresponding author. Tel.: +81 29 282 1111; fax: +81 29

282 9473.

E-mail address: kato@tokai.jnc.go.jp (M. Kato).
Edwards et al. [15] measured the DGO2
of

(Pu0.23U0.77)O2±x by a thermogravimetric technique,

where the equilibrium condition was established in the

system of the oxide phases and CO/CO2 gas phase.

The DGO2
of the MOX with the content of 30% Pu

was reported by Markin et al. [12,13]. They measured

the DGO2
of (Pu0.3U0.7)O2±x at temperatures from

800 �C to 1100 �C by the EMF method. Woodley [20]

measured the DGO2
of (Pu0.25U0.75)O2±x, (Pu0.4U0.6)O2±x

and PuO2�x, and evaluated the Pu content dependency

on the DGO2
of the MOX. There is a difference between

Woodley�s data and Markin�s data. In the present work,

the DGO2
of (Pu0.3U0.7)O2�x was measured by a thermo-

gravimetric technique with an inert gas/H2/H2O gas

mixture.
2. Experimental

2.1. Sample preparation

The starting materials were prepared by the micro-

wave denitration method [24], in which the plutonium
ed.
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Fig. 1. Schematic drawing of the apparatus.
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to uranium ratio was controlled in the nitrate solution.

The (Pu0.3U0.7)O2 powder was pressed and sintered

(1700 �C for 3 h in Ar/5%H2 mixed gas) to make a pellet

(diameter, 5.4 mm). A pellet was crushed using an agate

mortar and pestle to obtain the sample for the measure-

ment of DGO2
. Part of a crushed pellet was annealed at

850 �C for 8 h in an atmosphere of DGO2
of �420 kJ/

mol to adjust the O/M to 2.00 [12,13]. The weight of

the sample was measured to be 199.995 mg. The impuri-

ties in the raw material were chemically analyzed and are

listed in Table 1. The homogeneity of the sample was

confirmed by X-ray diffraction and by electron probe

micro analyzer.

2.2. Apparatus and experimental technique

The apparatus for measuring the DGO2
is shown sche-

matically in Fig. 1. Thermal gravimetry and differential

thermal analysis (TG–DTA) were used to measure the

DGO2
. The TG–DTA measurements were made with a

RIGAKU TG8120 model which was modified to be

air tight. The device was put in a glove box isolated from

vibration by four air dampers. The weight change of

±1 lg which corresponds to the O/M change of

±0.0001, could be measured by TG with a horizontal

differential type balance. The O/M ratio was calculated

from the weight change of the sample by

O=M ¼ 2.0000� 16.894 � DW =W ; ð1Þ

where DW is the change of sample weight and W is the

sample weight at O/M of 2.0000. Although there was a

small drift in the weight measurement, it could be can-

celed completely by measurements of the sample weights

before and after the experiment under the standard con-

dition of DGO2
.

Table 1

Typical impurities from raw material analysis

ppm

Ag 4

Al <50

B <2

Ca <50

Cd <2

Cr 90

Cu 5

Fe 390

Mg <20

Mn 10

Mo <20

Na 260

Ni 40

Si <20

V <50

Zn <50
The DGO2
in the atmosphere inside the device was

controlled by the H2O/H2 ratio, which was established

by mixing inert gas (He or Ar) and inert gas containing

5% H2and by adding water vapor. Considering the reac-

tion of H2O MH2 + 1/2O2, the equilibrium of the H2O/

H2 system is expressed by

DGf ¼ �RT ln
PH2O

PH2
� P 1=2

O2

; ð2Þ

where R is gas constant (8.3145 J/mol K), T is the abso-

lute temperature (K) and Pi is partial pressure of i (atm).

The free energy, DGf, can be calculated by [25]

DGf ¼ �246440þ 54.81 � T . ð3Þ

The PO2
of the off gas from the TG–DTA device was

measured at 700 �C using stabilized zirconia oxygen sen-

sors. The H2O/H2 ratio at 700 �C was calculated by Eq.

(2). The PO2
at the position of the sample was calculated

under the assumption that the above ratio of H2O/H2

was the same as that at the sample position. The exper-

imental error of the oxygen potential was estimated to

be less than 1 kJ/mol based on the measurement of stan-

dard materials of Fe/FeO [25]. The PO2
measurements

were carried out at 1000 �C, 1200 �C, 1300 �C and

1350 �C in an atmosphere of Ar/H2/H2O or He/H2/

H2O mixed gas.
3. Results and discussion

Fig. 2 shows the TG and the PO2
curves for the mea-

surement at 1300 �C. It is observed that the TG curve

changes according to the change of PO2
and reaches

equilibrium with the PO2
of the atmosphere in less than

15 min. A short time measurement by using a small sam-

ple could result in measuring a small variation in O/M

ratio as shown in Fig. 2.
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Fig. 2. The TG and the PO2
curves measured at 1300 �C.
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The PO2
of (Pu0.3U0.7)O2�x was measured at 1000 �C,

1200 �C, 1300 �C and 1350 �C. The oxygen potentials,

DGO2
, were calculated from the PO2

by the following

equation

DGO2
¼ �RT ln PO2

. ð4Þ

Fig. 3 shows the DGO2
as a function of the O/M ratio.

Systematic data with little ambiguity are obtained by

using the sophisticated O/M measurement device. It

can be said that the data are useful to understand the

mechanism of the change of the DGO2
in the O/M-sensi-
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Fig. 3. Variation in the oxygen potential of Pu0.3U0.7O2�x with

composition at temperatures from 1000 �C to 1350 �C.
tive region in the neighborhood of stoichiometry. Mar-

kin�s data [12,13] on DGO2
at 1100 �C (Pu0.3U0.7)O2�x

are also shown in Fig. 3 for comparison. The present

data are in good agreement with Markin�s data. The

DGO2
can be expressed as a function of temperature by

DGO2
¼ DHO2

� T � DSO2
; ð5Þ

where DHO2
is partial molar enthalpy and DSO2

is partial

molar entropy. Figs. 4 and 5 show DHO2
and the DSO2

calculated using the present experimental data,
O/M

Fig. 4. DHO2
as a function of O/M ratio.
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Fig. 5. DSO2
as a function of O/M ratio.
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respectively. The present DHO2
and the DSO2

are some-

what lower than those of Markin�s data [13] but the

agreement in the dependencies of DHO2
and the DSO2

on O/M are quite good for both.

Many models have been studied to predict DGO2
as a

function of temperature and composition [1,2,11,23,26].

Blackburn�s group developed the oxygen potential

model based on the chemical reaction between metal

ions and oxygen [1,2]. Recently, Nagai [26] improved

the Blackburn model so that it can reproduce experi-

mental data of UO2+x, MOX and PuO2�x. More mech-

anistic models have been developed based on lattice

defect theory [27–29]. The relationship between the PO2

and x in MO2�x is written by

x / P 1=n
O2

;

where n is a characteristic number identifying the type of

lattice defect.

The present data of PO2
provide useful information to

find the dependency of PO2
on the composition parame-

ter of x. Fig. 6 shows the relation between PO2
and x in

MO2�x. Data of Markin and McIver [12] and of Chilton

[14] are also shown there to indicate the relationship in

the large x region. Markin and McIver [12] measured

DGO2 of MOX at 800 �C, 950 �C and 1100 �C by a gal-

vanic cell method, while Chilton [14] measured the DGO2

of (Pu0.31U0.69)O2�x at 1541.98 �C by a thermogravimet-

ric method using CO/CO2 mixed gas. The experimental

results of (Pu0.3U0.7)O2�x show that there is a consistent

variation in PO2
with O/M and the temperature, agreeing

with other works [12–14]. The relationship in the hypo-

stoichiometric region is n = �2 near stoichiometric com-

position, and the value of n changes to n = �3 in both

the present and the other data with a decrease in O/M.

The boundary between two areas with x / P�1=3
O2

and

x / P�1=2
O2

is shown with a dotted line in Fig. 6. The area

with x / P�1=2
O2

is extended with increasing temperature.
4. Conclusion

The oxygen potentials of (Pu0.3U0.7)O2�x were mea-

sured by a thermogravimetric technique. The measure-

ments have been done in a region of near

stoichiometric composition at temperatures from

1000 �C to 1350 �C, where DGO2
changed sensitively in

response to O/M. Systematic data have been obtained

with little ambiguity. The present data were in good

agreement with Markin�s data.
The relationship between the partial oxygen pressure

(PO2
) and x in MO2�x was analyzed based on lattice de-

fect theory. The relation of x / P�1=2
O2

was found in the

region of near stoichiometric composition.
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