Oxygen potentials of plutonium and uranium mixed oxide

Masato Kato ${ }^{\text {a,* }}$, Tetsuya Tamura ${ }^{\text {b }}$, Kenji Konashi ${ }^{\text {c }}$, Shigenori Aono ${ }^{\text {a }}$
${ }^{\text {a }}$ Japan Nuclear Cycle Development Institute, Tokai Works, 4-33 Muramatu, Tokai-Mura, Ibaraki 319-1194, Japan
${ }^{\mathrm{b}}$ Inspection Development Company, 4-33 Muramatu, Tokai-Mura, Ibaraki 319-1194, Japan
${ }^{\text {c }}$ Tohoku University, 2145-1313 Narita-chou, Oarai-chou, Ibaraki 311-1313, Japan

Abstract

The oxygen potentials of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ in the near stoichiometric region were measured by a thermogravimetric technique which was used to establish the equilibrium between the oxide phases and $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ system gas. The experimental results of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ show a consistent variation in $P_{\mathrm{O}_{2}}$ with O / M and temperature and are in agreement with other works. The relationship between the partial oxygen pressure and x in MO_{2-x} was evaluated by the lattice defect theory. The relationship in the hypo-stoichiometric region was $x \propto P_{\mathrm{O}_{2}}^{-1 / 2}$ near the stoichiometric composition, and became $x \propto P_{\mathrm{O}_{2}}^{-1 / 3}$ with a decrease in O / M. © 2005 Elsevier B.V. All rights reserved.

1. Introduction

The oxygen potential $\left(\Delta \bar{G}_{\mathrm{O}_{2}}\right)$ of mixed oxide (MOX) fuel is an important parameter to control irradiation behavior as well as the fabrication process [1,2]. The $\Delta \bar{G}_{\mathrm{O}_{2}}$ is expressed as a function of the ratio of oxygen to metal (O/M). The stable structure of the MOX is fluorite in the range of the O / M ratio of $2 \pm x[3,4]$. In the range of near stoichiometric composition, the $\Delta \bar{G}_{\mathrm{O}_{2}}$ changes drastically with the change of the O / M ratio. There are a number of experimental data of the $\Delta \bar{G}_{\mathrm{O}_{2}}$ for UO_{2} [5-11], which is the fuel in light water reactors (LWRs). On the other hand, data for MOX fuel which is used in fast reactors (FRs) [12-23] are limited. In this work, the $\Delta \bar{G}_{\mathrm{O}_{2}}$ was measured for the MOX fuel with the composition of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$, which has been used as a core fuel of the FR 'Monju'.

[^0]Edwards et al. [15] measured the $\Delta \bar{G}_{\mathrm{O}_{2}}$ of $\left(\mathrm{Pu}_{0.23} \mathrm{U}_{0.77}\right) \mathrm{O}_{2 \pm x}$ by a thermogravimetric technique, where the equilibrium condition was established in the system of the oxide phases and $\mathrm{CO} / \mathrm{CO}_{2}$ gas phase. The $\Delta \bar{G}_{\mathrm{O}_{2}}$ of the MOX with the content of $30 \% \mathrm{Pu}$ was reported by Markin et al. [12,13]. They measured the $\Delta \bar{G}_{\mathrm{O}_{2}}$ of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2 \pm x}$ at temperatures from $800^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$ by the EMF method. Woodley [20] measured the $\Delta \bar{G}_{\mathrm{O}_{2}}$ of $\left(\mathrm{Pu}_{0.25} \mathrm{U}_{0.75}\right) \mathrm{O}_{2 \pm x},\left(\mathrm{Pu}_{0.4} \mathrm{U}_{0.6}\right) \mathrm{O}_{2 \pm x}$ and PuO_{2-x}, and evaluated the Pu content dependency on the $\Delta \bar{G}_{\mathrm{O}_{2}}$ of the MOX. There is a difference between Woodley's data and Markin's data. In the present work, the $\Delta \bar{G}_{\mathrm{O}_{2}}$ of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ was measured by a thermogravimetric technique with an inert gas $/ \mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ gas mixture.

2. Experimental

2.1. Sample preparation

The starting materials were prepared by the microwave denitration method [24], in which the plutonium
to uranium ratio was controlled in the nitrate solution. The $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2}$ powder was pressed and sintered $\left(1700{ }^{\circ} \mathrm{C}\right.$ for 3 h in $\mathrm{Ar} / 5 \% \mathrm{H}_{2}$ mixed gas) to make a pellet (diameter, 5.4 mm). A pellet was crushed using an agate mortar and pestle to obtain the sample for the measurement of $\Delta \bar{G}_{\mathrm{O}_{2}}$. Part of a crushed pellet was annealed at $850^{\circ} \mathrm{C}$ for 8 h in an atmosphere of $\Delta \bar{G}_{\mathrm{O}_{2}}$ of $-420 \mathrm{~kJ} /$ mol to adjust the O / M to 2.00 [12,13]. The weight of the sample was measured to be 199.995 mg . The impurities in the raw material were chemically analyzed and are listed in Table 1. The homogeneity of the sample was confirmed by X-ray diffraction and by electron probe micro analyzer.

2.2. Apparatus and experimental technique

The apparatus for measuring the $\Delta \bar{G}_{\mathrm{O}_{2}}$ is shown schematically in Fig. 1. Thermal gravimetry and differential thermal analysis (TG-DTA) were used to measure the $\Delta \bar{G}_{\mathrm{O}_{2}}$. The TG-DTA measurements were made with a RIGAKU TG8120 model which was modified to be air tight. The device was put in a glove box isolated from vibration by four air dampers. The weight change of $\pm 1 \mu \mathrm{~g}$ which corresponds to the O / M change of ± 0.0001, could be measured by TG with a horizontal differential type balance. The O/M ratio was calculated from the weight change of the sample by
$\mathrm{O} / \mathrm{M}=2.0000-16.894 \cdot \Delta W / W$,
where ΔW is the change of sample weight and W is the sample weight at O / M of 2.0000 . Although there was a small drift in the weight measurement, it could be canceled completely by measurements of the sample weights before and after the experiment under the standard condition of $\Delta \bar{G}_{\mathrm{O}_{2}}$.

Table 1
Typical impurities from raw material analysis

	ppm
Ag	4
Al	<50
B	<2
Ca	<50
Cd	<2
Cr	90
Cu	5
Fe	390
Mg	<20
Mn	10
Mo	<20
Na	260
Ni	40
Si	<20
V	<50
Zn	<50

Fig. 1. Schematic drawing of the apparatus.

The $\Delta \bar{G}_{\mathrm{O}_{2}}$ in the atmosphere inside the device was controlled by the $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2}$ ratio, which was established by mixing inert gas (He or Ar) and inert gas containing $5 \% \mathrm{H}_{2}$ and by adding water vapor. Considering the reaction of $\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2}+1 / 2 \mathrm{O}_{2}$, the equilibrium of the $\mathrm{H}_{2} \mathrm{O}$ / H_{2} system is expressed by
$\Delta G_{\mathrm{f}}=-R T \ln \frac{P_{\mathrm{H}_{2} \mathrm{O}}}{P_{\mathrm{H}_{2}} \cdot P_{\mathrm{O}_{2}}^{1 / 2}}$,
where R is gas constant ($8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{K}$), T is the absolute temperature (K) and P_{i} is partial pressure of $i(\mathrm{~atm})$. The free energy, $\Delta \mathrm{G}_{\mathrm{f}}$, can be calculated by [25]
$\Delta G_{\mathrm{f}}=-246440+54.81 \cdot T$.
The $P_{\mathrm{O}_{2}}$ of the off gas from the TG-DTA device was measured at $700^{\circ} \mathrm{C}$ using stabilized zirconia oxygen sensors. The $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2}$ ratio at $700{ }^{\circ} \mathrm{C}$ was calculated by Eq. (2). The $P_{\mathrm{O}_{2}}$ at the position of the sample was calculated under the assumption that the above ratio of $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2}$ was the same as that at the sample position. The experimental error of the oxygen potential was estimated to be less than $1 \mathrm{~kJ} / \mathrm{mol}$ based on the measurement of standard materials of $\mathrm{Fe} / \mathrm{FeO}$ [25]. The $P_{\mathrm{O}_{2}}$ measurements were carried out at $1000^{\circ} \mathrm{C}, 1200^{\circ} \mathrm{C}, 1300^{\circ} \mathrm{C}$ and $1350^{\circ} \mathrm{C}$ in an atmosphere of $\mathrm{Ar} / \mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{He} / \mathrm{H}_{2} /$ $\mathrm{H}_{2} \mathrm{O}$ mixed gas.

3. Results and discussion

Fig. 2 shows the TG and the $P_{\mathrm{O}_{2}}$ curves for the measurement at $1300^{\circ} \mathrm{C}$. It is observed that the TG curve changes according to the change of $P_{\mathrm{O}_{2}}$ and reaches equilibrium with the $P_{\mathrm{O}_{2}}$ of the atmosphere in less than 15 min . A short time measurement by using a small sample could result in measuring a small variation in O / M ratio as shown in Fig. 2.

Fig. 2. The TG and the $P_{\mathrm{O}_{2}}$ curves measured at $1300^{\circ} \mathrm{C}$.

The $P_{\mathrm{O}_{2}}$ of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ was measured at $1000{ }^{\circ} \mathrm{C}$, $1200^{\circ} \mathrm{C}, 1300^{\circ} \mathrm{C}$ and $1350^{\circ} \mathrm{C}$. The oxygen potentials, $\Delta \bar{G}_{\mathrm{O}_{2}}$, were calculated from the $P_{\mathrm{O}_{2}}$ by the following equation
$\Delta \bar{G}_{\mathrm{O}_{2}}=-R T \ln P_{\mathrm{O}_{2}}$.
Fig. 3 shows the $\Delta \bar{G}_{\mathrm{O}_{2}}$ as a function of the O / M ratio. Systematic data with little ambiguity are obtained by using the sophisticated O / M measurement device. It can be said that the data are useful to understand the mechanism of the change of the $\Delta \bar{G}_{\mathrm{O}_{2}}$ in the O / M-sensi-

Fig. 3. Variation in the oxygen potential of $\mathrm{Pu}_{0.3} \mathrm{U}_{0.7} \mathrm{O}_{2-x}$ with composition at temperatures from $1000{ }^{\circ} \mathrm{C}$ to $1350{ }^{\circ} \mathrm{C}$.
tive region in the neighborhood of stoichiometry. Markin's data $[12,13]$ on $\Delta \bar{G}_{\mathrm{O}_{2}}$ at $1100{ }^{\circ} \mathrm{C}\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ are also shown in Fig. 3 for comparison. The present data are in good agreement with Markin's data. The $\Delta \bar{G}_{\mathrm{O}_{2}}$ can be expressed as a function of temperature by
$\Delta \bar{G}_{\mathrm{O}_{2}}=\Delta \bar{H}_{\mathrm{O}_{2}}-T \cdot \Delta \bar{S}_{\mathrm{O}_{2}}$,
where $\Delta \bar{H}_{\mathrm{O}_{2}}$ is partial molar enthalpy and $\Delta \bar{S}_{\mathrm{O}_{2}}$ is partial molar entropy. Figs. 4 and 5 show $\Delta \bar{H}_{\mathrm{O}_{2}}$ and the $\Delta \bar{S}_{\mathrm{O}_{2}}$ calculated using the present experimental data,

Fig. 4. $\Delta \bar{H}_{\mathrm{O}_{2}}$ as a function of O / M ratio.

Fig. 5. $\Delta \bar{S}_{\mathrm{O}_{2}}$ as a function of O / M ratio.

Fig. 6. Relationships between $P_{\mathrm{O}_{2}}$ and x in MO_{2-x}.
respectively. The present $\Delta \bar{H}_{\mathrm{O}_{2}}$ and the $\Delta \bar{S}_{\mathrm{O}_{2}}$ are somewhat lower than those of Markin's data [13] but the agreement in the dependencies of $\Delta \bar{H}_{\mathrm{O}_{2}}$ and the $\Delta \bar{S}_{\mathrm{O}_{2}}$ on O / M are quite good for both.

Many models have been studied to predict $\Delta \bar{G}_{\mathrm{O}_{2}}$ as a function of temperature and composition [1,2,11,23,26]. Blackburn's group developed the oxygen potential model based on the chemical reaction between metal ions and oxygen [1,2]. Recently, Nagai [26] improved the Blackburn model so that it can reproduce experimental data of UO_{2+x}, MOX and PuO_{2-x}. More mechanistic models have been developed based on lattice defect theory [27-29]. The relationship between the $P_{\mathrm{O}_{2}}$ and x in MO_{2-x} is written by
$x \propto P_{\mathrm{O}_{2}}^{1 / n}$,
where n is a characteristic number identifying the type of lattice defect.

The present data of $P_{\mathrm{O}_{2}}$ provide useful information to find the dependency of $P_{\mathrm{O}_{2}}$ on the composition parameter of x. Fig. 6 shows the relation between $P_{\mathrm{O}_{2}}$ and x in MO_{2-x}. Data of Markin and McIver [12] and of Chilton [14] are also shown there to indicate the relationship in the large x region. Markin and McIver [12] measured $\Delta \mathrm{G}_{\mathrm{O} 2}$ of MOX at $800^{\circ} \mathrm{C}, 950^{\circ} \mathrm{C}$ and $1100^{\circ} \mathrm{C}$ by a galvanic cell method, while Chilton [14] measured the $\Delta \bar{G}_{\mathrm{O}_{2}}$ of $\left(\mathrm{Pu}_{0.31} \mathrm{U}_{0.69}\right) \mathrm{O}_{2-x}$ at $1541.98^{\circ} \mathrm{C}$ by a thermogravimetric method using $\mathrm{CO} / \mathrm{CO}_{2}$ mixed gas. The experimental results of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ show that there is a consistent variation in $P_{\mathrm{O}_{2}}$ with O / M and the temperature, agreeing with other works [12-14]. The relationship in the hypostoichiometric region is $n=-2$ near stoichiometric composition, and the value of n changes to $n=-3$ in both the present and the other data with a decrease in O / M. The boundary between two areas with $x \propto P_{\mathrm{O}_{2}}^{-1 / 3}$ and $x \propto P_{\mathrm{O}_{2}}^{-1 / 2}$ is shown with a dotted line in Fig. 6. The area with $x \propto P_{\mathrm{O}_{2}}^{-1 / 2}$ is extended with increasing temperature.

4. Conclusion

The oxygen potentials of $\left(\mathrm{Pu}_{0.3} \mathrm{U}_{0.7}\right) \mathrm{O}_{2-x}$ were measured by a thermogravimetric technique. The measurements have been done in a region of near stoichiometric composition at temperatures from $1000^{\circ} \mathrm{C}$ to $1350{ }^{\circ} \mathrm{C}$, where $\Delta \bar{G}_{\mathrm{O}_{2}}$ changed sensitively in response to O/M. Systematic data have been obtained with little ambiguity. The present data were in good agreement with Markin's data.

The relationship between the partial oxygen pressure $\left(P_{\mathrm{O}_{2}}\right)$ and x in MO_{2-x} was analyzed based on lattice defect theory. The relation of $x \propto P_{\mathrm{O}_{2}}^{-1 / 2}$ was found in the region of near stoichiometric composition.

Acknowledgement

The authors wish to thank Dr S. Nagai for his advice.

References

[1] P.E. Blackburn, C.E. Johnson, IAEA-SM-190/50.
[2] C.E. Johnson, I. Johnson, P.E. Blackburn, C.E. Crouthamel, Reactor Technology 15 (4), Winter 1972.
[3] T.L. Markin, R.S. Street, J. Inorg. Nucl. Chem. 29 (1967) 2265.
[4] C. Sari, U. Benedict, H. Blank, J. Nucl. Mater. 35 (1970) 267.
[5] T.L. Markin, R.J. Bones, AERE-R 4042, 1962.
[6] T.L. Markin, R.J. Bones, AERE-R 4178, 1962.
[7] V. Baranov, Yu.G. Godin, Trans. Atom. Energy 51 (4) (1981) 228.
[8] M. Ugajin, J. Sci. Technol. 20 (3) (1983) 228.
[9] M. Ugajin, J. Nucl. Mater. 110 (1982) 140.
[10] T.L. Markin, R.J. Bones, E.R. Gardner, AERE-R 4724, 1964.
[11] T.B. Lindemer, T.M. Besmann, J. Nucl. Mater. 10 (1985) 473.
[12] T.L. Markin, E.J. McIver, in: The 3rd International Conference on Plutonium, 1965, p. 845.
[13] T.L. Markin, The Plutonium-oxygen and uranium-pluto-nium-oxygen systems: a thermochemical assessment, Tech. Report Ser. No. 79, IAEA, 1967.
[14] G.R. Chilton, J. Edwards, ND-R-276(W), 1980.
[15] J. Edwards, R.N. Wood, G.R. Chilton, J. Nucl. Mater. 130 (1985) 505.
[16] G.R. Chilton, I.A. Kirkham, ND-R-98(W), 1978.
[17] N.A. Javed, J. Nucl. Mater. 47 (1973) 336.
[18] N.A. Javed, J.T.A. Robers, ANL-7901, 1972.
[19] W.E. Woodley, M.G. Adamson, J. Nucl. Mater. 82 (1979) 65.
[20] W.E. Woodley, J. Nucl. Mater. 96 (1981) 5.
[21] M. Tetenbaum, IAEA-SM-190/41, 1975, p. 305.
[22] O.T. Sorensen, Plutonium and Other Actinides, 1976, p. 123.
[23] T.M. Besmann, T.B. Lindemer, J. Nucl. Mater. 130 (1985) 489.
[24] M. Koizumi, K. Otsuka, J. Nucl. Sci. Technol. 20 (7) (1983) 529.
[25] O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th Ed., Pergamon, 1979.
[26] S. Nagai, JNC TN8410 99-019 (in Japanese).
[27] G. Brouwer, Philips Res. Rep. 9 (1954) 366.
[28] P. Kofstad, Nonstoichiometry Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley, New York, 1972.
[29] O.T. Sorensen, Nonstoichimetric Oxides, Academic Press, New York, 1981, p. 1.

[^0]: * Corresponding author. Tel.: +81 29282 1111; fax: +81 29 2829473.

 E-mail address: kato@tokai.jnc.go.jp (M. Kato).

